Lecture notes for Abstract Algebra: Lecture $14+15$

1 Characters

1.1 Group characters for finite abelian groups

Characters will be play a central role in the classification of finite abelian groups. Consider the set $C=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ in the complex plane.

Proposition 1. C is a subgroup of $\mathbb{C}^{*}=\{z \in \mathbb{C} \mid z \neq 0\}$ and $\xi^{-1}=\bar{\xi}$ (complex conjugate).

Proof. The identity element 1 of \mathbb{C}^{*} is in C. Also for $z_{1}, z_{2} \in \mathbb{C}$ we have $\left|z_{1} z_{2}\right|=$ $\left|z_{1}\right|\left|z_{2}\right|$, and the set C is closed under multiplications. For the inverse we have:

$$
z \in C \Rightarrow z^{-1}=\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}=\bar{z} \in C
$$

And we have checked all conditions for C being a subgroup.
Proposition 2. Every finite subgroup of C is cyclic.
Proof. Let D be a subgroup of C. If $D=1$ then $D=\langle 1\rangle$ and we are done. Otherwise, suppose that $D \neq 1$ and choose the element $\delta \in D$ such that the positive angle θ to the x-axis s minimal. If the element $z \in D$ is strictly $\delta^{k}<z<\delta^{k+1}$ for some value k, then the element $z \delta^{-k} \in D$ would have a smaller angle. The conclusion is that, for any $z \in D$ there exists a power k such that $z=\delta^{k}$.

Example 3. The group C_{n} of complex n-roots of unity is a finite subgroup of C.
Remark 4. Infinite subgroups of C not need to be cyclic. Take for example an irrational number θ and the group K generated by -1 and $e^{2 \pi i \theta}$. If this group were to be cyclic generated by an element $\delta=e^{2 \pi i \phi}$, we will have integers k, l such that

$$
e^{2 \pi i \theta}=\delta^{k}=e^{2 k \pi i \phi} \text { and }-1=\delta^{l}=e^{2 l \pi i \phi} .
$$

This will give $\theta=k \phi+m$ and $\frac{1}{2}=l \phi+n$ for integers m, n. Since, θ is irrational and $1 / 2$ is a rational number we arrive to a contradiction. In the group just described we cannot define an element with minimum positive angle.

Definition 5. Let G be a finite abelian group. A character of G is a group homomorphism $\chi: G \longrightarrow C$. The set of all characters of G is denoted by \widehat{G}.

Proposition 6. The set of characters has a natural structure of abelian group.

Proof. Define $\chi * \chi^{\prime}$ by the map multiplication $\left(\chi * \chi^{\prime}\right)(x)=\chi(x) \chi^{\prime}(x)$. It is also a group homomorphism $G \longrightarrow C$. Also put $\chi^{-1}=\bar{\chi}$ and take the identity element as the constant function 1 .

Remark 7. The group of characters of a finite abelian group is finite. Let $x \in G$ and n be the order of the group G. We have $1=\chi(1)=\chi\left(x^{n}\right)=(\chi(x))^{n}$. Hence $\chi(x)$ is an n-th root of unity in C, there are at most n choices of $\chi(x)$ for each $x \in G$ and the number of characters is finite.

Proposition 8. If G is cyclic, $\widehat{G} \cong G$.
Proof. Let χ be a character on G and $G=\langle g\rangle$ of order n. Since $\chi(g)^{n}=1$, we know that $\chi(g)$ is a complex n-root of unity, that is $\chi(g) \in C_{n}$. Let us define a map $\rho: C_{n} \longrightarrow \hat{G}, \rho(\xi)=\chi_{\xi}$, where $\chi_{\xi}\left(g^{k}\right)=\xi^{k}$.
First of all, the map is well defined since $g^{k}=g^{k^{\prime}} \Rightarrow n \mid k-k^{\prime} \Rightarrow \xi^{k}=\xi^{k^{\prime}}$. We need to check that: χ_{ξ} is a character: $\chi_{\xi}\left(g^{k} g^{l}\right)=\chi_{\xi}\left(g^{k+l}\right)=\xi^{k+l}=\xi^{k} \xi^{l}=\chi_{\xi}\left(g^{k}\right) \chi_{\xi}\left(g^{l}\right)$.
The map is a group homomorphism: $\chi_{\xi \nu}\left(g^{k}\right)=\xi^{k} \nu^{k}=\chi_{\xi}\left(g^{k}\right) \chi_{\nu}\left(g^{k}\right)$.
The map is surjective: since each character $\chi=\chi_{\xi}$ for some $\xi \in C_{n}$.
The map is injective: since $\chi_{\xi}=1 \Rightarrow \xi^{k}=1$ for all $k \Rightarrow \xi=1$.
Proposition 9. Let G be a finite abelian group and $H \subset G$ a subgroup. Every character χ_{0} on H can be extended to a character on G.

Proof. We proceed by induction on the order of the quotient group $|G / H|$. If $|G / H|=$ 1 , then $G=H$, the character χ_{0} is already a character of G. If the order of the quotient $|G / H|>1$, choose a class $g H$ of G / H such that $g H \neq H$ and denote by $M / H=\langle g H\rangle$ the cyclic group of G / H generated by $g H$. If $M \neq G$, both $|M / H|$ and G / M are both of order less than G / H and hence we can extend χ_{0}, first to a character of M and then to a character of the whole G. We may assume then that $M=G$ and $G / H=M / H=\langle g H\rangle$ is cyclic. Let $n=|G / H|$. We have then that $g^{n} H=H$ and hence $g^{n} \in H$. Choose a complex number ξ such that $\chi_{0}\left(g^{n}\right)=\xi^{n}$ and define the map:

$$
\chi\left(g^{r} h\right)=\xi^{r} \chi_{0}(h),
$$

for all $n>r \geq 0$ and $h \in H$. The map is well defined because the cosets

$$
H_{r}=\left\{g^{r} h \mid 0 \leq r<n, h \in H\right\}
$$

form a partition of G. We can prove that the map defined this way is a character on the whole G and it extendes χ_{0}.

Corollary 10. Let G be a finite abelian group and $h \in G$ such that $h \neq 1$. Then, there exist a character $\chi \in \widehat{G}$ such that $\chi(h) \neq 1$.

Theorem 11. (Orthogonality relations) Let G be a finite abelian group:

1. For χ and χ^{\prime} characters we have $\sum_{g \in G} \overline{\chi(g)} \chi^{\prime}(g)= \begin{cases}|G| & \text { if } \chi=\chi^{\prime} \\ 0 & \text { if } \chi \neq \chi^{\prime}\end{cases}$
2. For g and g^{\prime} in G have $\sum_{\chi \in \hat{G}} \overline{\chi(g)} \chi\left(g^{\prime}\right)= \begin{cases}|\hat{G}| & \text { if } g=g^{\prime} \\ 0 & \text { if } g \neq g^{\prime}\end{cases}$

Proof. Consider the character $\xi=\bar{\chi} \chi^{\prime}$. If $\xi \equiv 1$, then $\xi(g)=1$ for all g and $\sum_{g \in G} \xi(g)=|G|$. On the other hand if ξ is not identically 1 , there exist $g_{1} \in G$ such that $\xi\left(g_{1}\right) \neq 1$ and we will have:

$$
\xi\left(g_{1}\right) \sum_{g \in G} \xi(g)=\sum_{g \in G} \xi\left(g_{1} g\right)=\sum_{g \in G} \xi(g) .
$$

Since $\xi\left(g_{1}\right) \neq 1$, it must be the case that $\sum_{g \in G} \xi(g)=0$.
The other direction is similar: put now $h=g^{-1} g^{\prime}$ and compute $\sum_{\chi \in \hat{G}} \chi(h)$. If $h=1$, we get $\sum_{\chi \in \hat{G}} \chi(h)=|\hat{G}|$. On the other hand if $h \neq 1$, there is a character $\chi_{1}(h) \neq 1$ and

$$
\chi_{1}(h) \sum_{\chi \in \hat{G}} \chi(h)=\sum_{\chi \in \hat{G}} \chi_{1}(h) \chi(h)=\sum_{\chi \in \hat{G}}\left(\chi_{1} \chi\right)(h)=\sum_{\chi \in \hat{G}} \chi(h)
$$

and since $\chi_{1}(h) \neq 1$ it must be the case that $\sum_{\chi \in \hat{G}} \chi(h)=0$.
Theorem 12. For each finite abelian group the orders $|\widehat{G}|=|G|$.
Proof. We do a summation in two different ways:

$$
|\widehat{G}|+0 \cdots+0=\sum_{g \in G} \sum_{\chi \in \widehat{G}} \chi(g)=\sum_{\chi \in \widehat{G}} \sum_{g \in G} \chi(g)=|G| \cdot+0+\cdots+0
$$

to get equality of the orders.

1.2 Character tables

The characters of a finite group form a character table which encodes much useful information about the group G. Each row is labelled by a character and the entries in the row are the values of that character on elements of the group. The columns are labelled by elements of G (in a more general setting this would be representative of conjugacy classes). It is customary to label the first row by the trivial character χ_{0}, which is the trivial action of G given by $\rho(g)=1$ for all $g \in G$.

	$C_{0}=1$	$C_{1}=g_{1}$	$C_{2}=g_{2}$	\cdots
$\chi_{0}=1$	1	1	1	\ldots
χ_{1}	1	$\chi_{1}\left(g_{1}\right)$	$\chi_{1}\left(g_{2}\right)$	\cdots
χ_{2}	1	$\chi_{2}\left(g_{1}\right)$	$\chi_{2}\left(g_{2}\right)$	\ldots
\ldots	\ldots	\ldots	\cdots	\cdots

For example, suppose that ω is a primitive third root of unity. Then the character table of of the cyclic group C_{3} can be represented by:

	1	g	g^{2}
$\chi_{0}=1$	1	1	1
χ_{1}	1	ω	ω^{2}
χ_{2}	1	ω^{2}	ω

Practice Questions:

1. Describe the table character for the cyclic group C_{5}.
